


Jenny List DESY 5.10.2015

CPAD Instrumentation Frontier Meeting October 5-7, 2015, Arlington / TX

ILC Detector Challenges, CPAD Meeting, Oct. 5-7, 2015

Outline

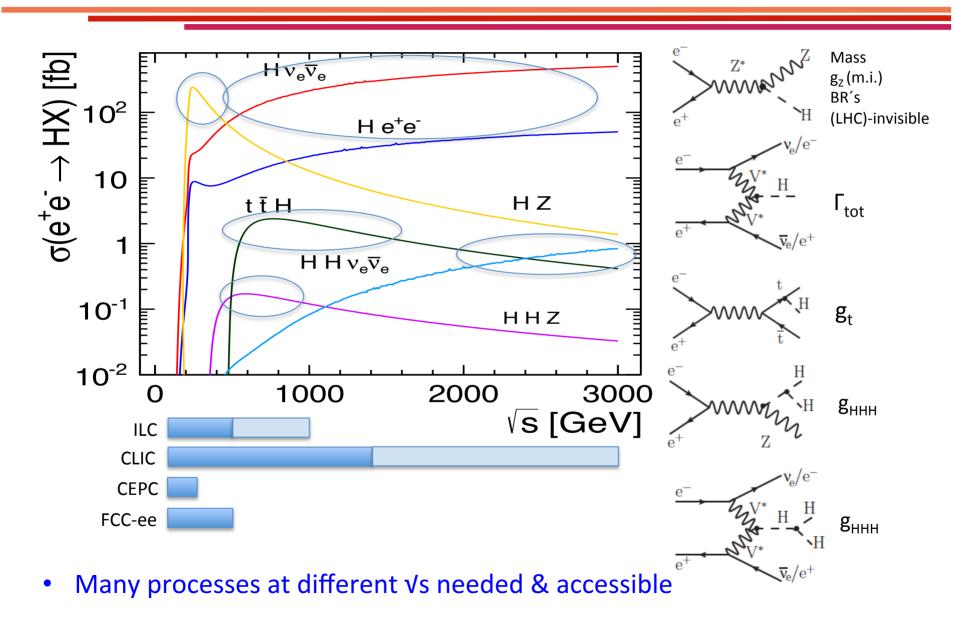
- Introduction:
 - What we need to learn about the Higgs in e⁺e⁻ collisions
- The International Linear Collider and other e⁺e⁻ projects
 - Accelerator properties
 - Key detector requirements
- Detector Challenges taking a closer look at four examples

Conclusions

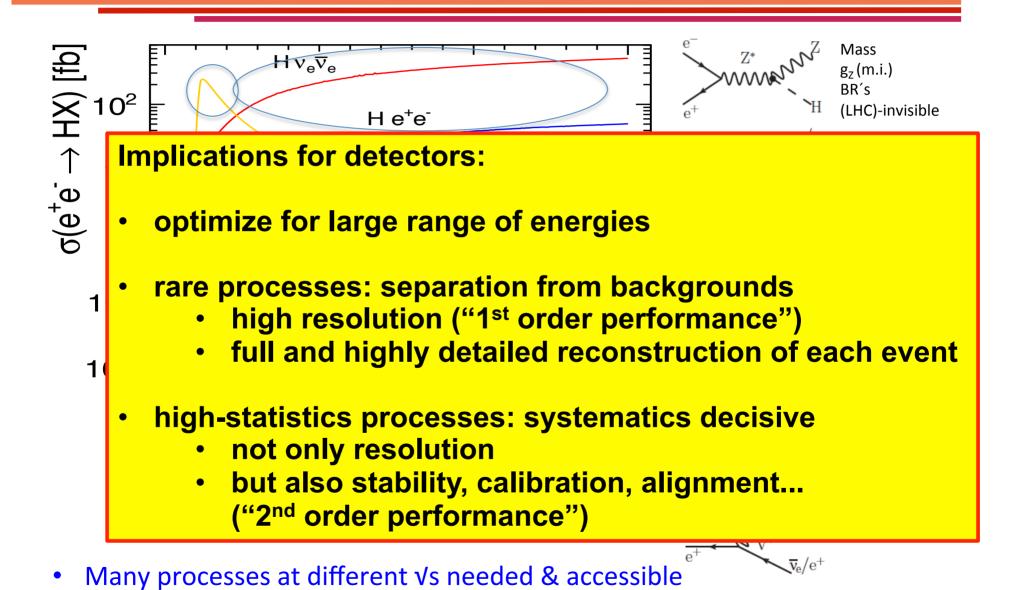
Introduction: What we need to learn about the Higgs in e⁺e⁻ collisions

After the Discovery...

With the discovery of a Higgs boson, we are just at the beginning:


- What is the physics behind EW symmetry breaking (EWSB)?
- What stabilizes the Higgs mass at the EW scale?
- Is the Higgs boson related to Dark Matter? Inflation?
 Baryogenesis? Or even Dark Energy?

Our gateway to answer these and many other questions:

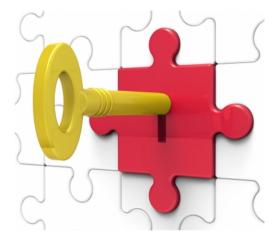

The **Higgs boson** and the top quark are crucial probes for the mechanism of EWSB

- A full, model-independent, high-precision profile of the 125 GeV Higgs boson and the top quark
- Searches for additional Higgs bosons
- Searches for partners of the Higgs: eg Higgsinos

The e⁺e⁻ Higgs Precision Program

The e⁺e⁻ Higgs Precision Program

The e⁺e⁻ Higgs Precision Program


Unique in e⁺e⁻:

measurement of the total ZH cross-section => the key to

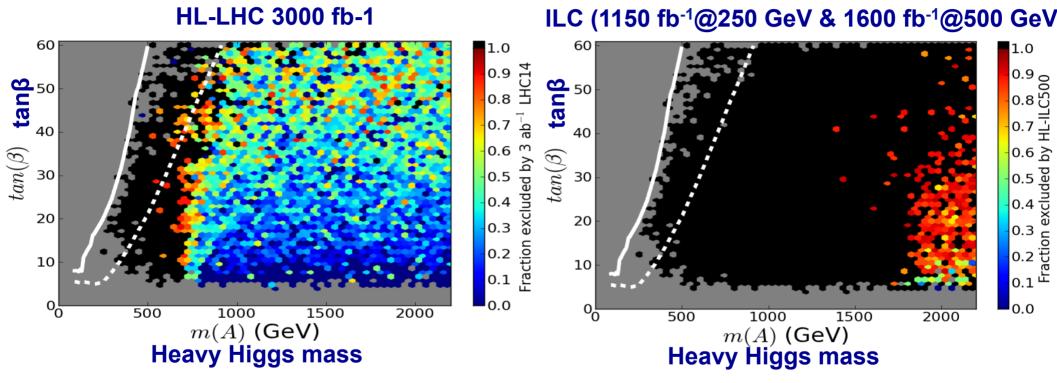
- absolute normalization of all couplings
- access to total width
- invisible decays

enables a model-independent interpretation of all other measurements – from hadron colliders & e⁺e⁻

- σ x BR, incl. bottom, charm, gluon, τ...
- direct measurement of y_t
- CP admixtures
- ultimate challenge: self-coupling λ_{HHH}

Requirement: do this with

sufficient precision to be


sensitive to new physics

effects!

Image courtesy of Stuart Miles at FreeDigitalPhotos.net

J.List

Example: constraints on pMSSM from hγγ, hττ, hbb

[Cahill-Rowley, Hewett, Ismail, Rizzo, arXiv:1407.7021 [hep-ph]]

Precision Higgs coupling measurements sensitive probe for heavy Higgs bosons $m_A \sim 2$ TeV reach for any tan β at the ILC

Searches for additional Higgs bosons

Since H125 looks roughly SM-like, additional Higgs bosons must have suppressed couplings to the Z boson

• "heavy": H, A, H[±], H^{±±}, ...

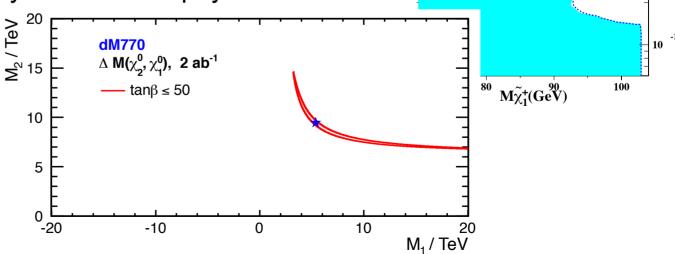
"light", with suppressed couplings to Z:

e.g. h, a in NMSSM

low mass region difficult for LHC

LEP limits still the best we have [here e.g. h->hadrons, flavor independent]

leaves lot of opportunities for discoveries with the luminosity and beam polarization of future e⁺e⁻ colliders!


Higgs Partners: Higgsinos

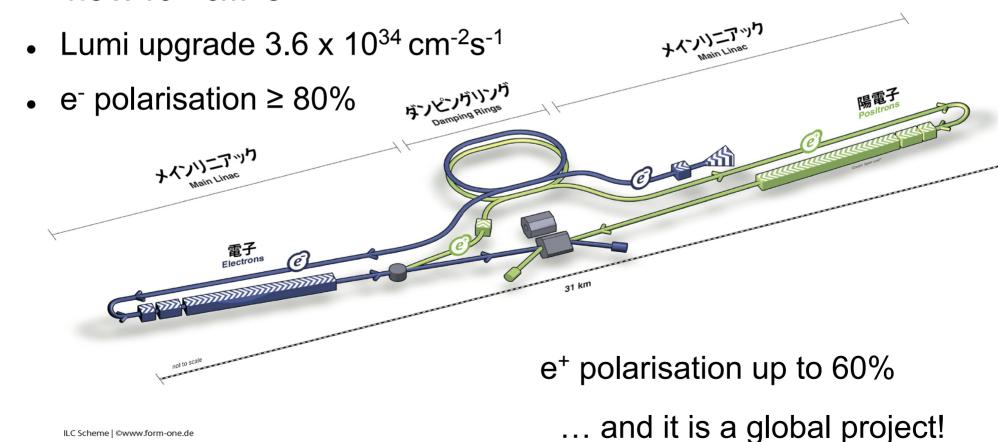
partners of the Higgs(es) naturally expected near EW scale

[c.f. e.g. H. Baer et al Phys.Rev.Lett. 109 (2012) 161802]

- if other new particles heavy => near-degenerate
- mass splittings ≈< 10 GeV, even sub-GeV
- very few and soft visible decay products
 - => extremely challenging for LHC
 - => also challenge for ILC detectors!
- but: offers sensitivity to multi-TeV physics!

Higgsino parameter determination at ILC when detector challenges solved

100


ADLO preliminary Higgsino - cMSSM

expected limit

The International Linear Collider and other e⁺e⁻ Projects

The International Linear Collider

- e^+e^- collisions with $\sqrt{s} = 200...500$ GeV, upgradable to 1 TeV
- Baseline luminosity at 500 GeV:
 1.8 x 10³⁴ cm⁻²s⁻¹

ILC Status

[K.Desch, DESY Theory WS 2015]

- technically ready to be built
- site chosen (Kitakami, northern Japan)
- interest from Japanese government to host ILC as international project

internal expert review at MEXT (Japanese science ministry)

Physics – Cost – International Sharing

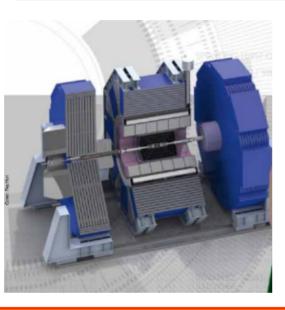
Final report: spring 2016

Behind the scenes: a lot...

Any reason to be optimistic:

- Japan very interested in large international lab (political top theme – far beyond physics)
- Strong statements in regional strategies (EU, US, Asia, ICFA)
- Strong physics case even if no additional LHC discovery in near future

And its detector concepts

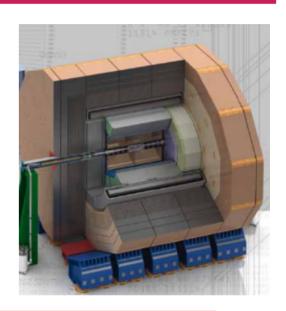

SiD

Tracker

- all Si
- R = 1.2m

B-field

5 T


ILD

Tracker

- TPC + Si
- R = 1.8m

B-field

• 3.5 T

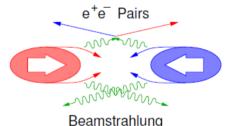
Common key design criteria:

- momentum resolution (=> total ZH x-section)
- vertexing (=> flavor tag, H-> bb/cc/ττ)
- jet energy resolution (=> total ZH x-section, H-> invis, ...)
- hermeticity (=> H-> invis, Higgsinos, ...)
- ⇒ low mass tracker (eg VTX: 0.15% rad. length / layer)
- ⇒ high granularity calorimeters optimised for particle flow

Operating the ILC

pulsed operation:

- trains of N_{bunch} = 1315 / 2625 bunches, 530 / 270 ns bunch spacing
- train repetition rate: 5 10 Hz => 199 99 ms break

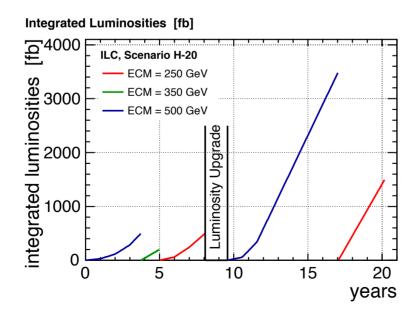

enables

- triggerless readout of detectors => sensitivity to "subtle" signatures
- power pulsing

=> low mass tracker, dense calorimeter

collisions:

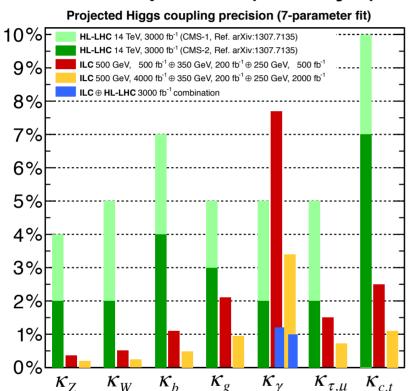
- luminosity grows with energy
- minimize beamstrahlung => flat beams 500x5 nm²

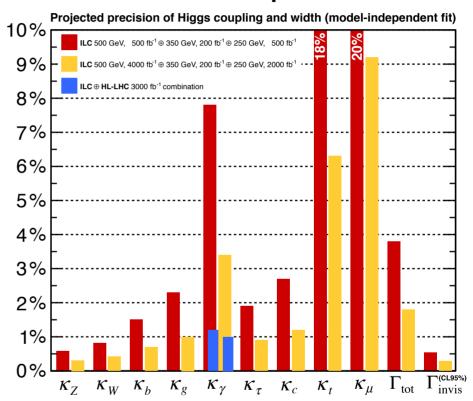

Bear	metro	abluu	nr
Deal	Hour	arılu	щ

ECM [GeV]	250	250	500	250	500	1000
rep. rate [Hz]	5	10	5	10	5	5
N _{bunch}	1315	1315	1315	2625	2625	2625
inst. lumi [10 ³⁴ / cm ² / s]	0.75	1.5	1.8	3	3.6	3.6-4.9
total power [MW]	100	160	160	190	200	300

A possible ILC running scenario

[ILC Parameters Joint WG arXiv:1506.07830]


Stage	ILC500			age ILC500 ILC500 LumiUP		niUP
\sqrt{s} [GeV]	500	350	250	500	350	250
${\cal L}$ [fb $^{ ext{-}1}$]	500	200	500	3500	-	1500
time [a]	3.7	1.3	3.1	7.5	-	3.1


possible 20 year running scenario

...and resulting Higgs coupling precisions

model-dependent (LHC-style)

model-independent

For precisions < 1%,
systematic uncertainties need to be considered
– also in detector design!

The Compact Linear Collider

- 350 GeV 3 TeV
- trains with 312 bunches
- repetition rate 50 Hz
- total power:
 - ~270MW @ 500 GeV
 - ~600MW @ 3 TeV

Detector Challenges:

- bunch spacing 0.5 ns
- 50 Hz: power pulsing? -> cooling needed?
- background from beamstrahlung pairs

Success of CDR studies:

immense background from e⁺e⁻ pairs and γγ-> hadrons can be dealt with

Circular e⁺e⁻ Colliders

CepC (China)

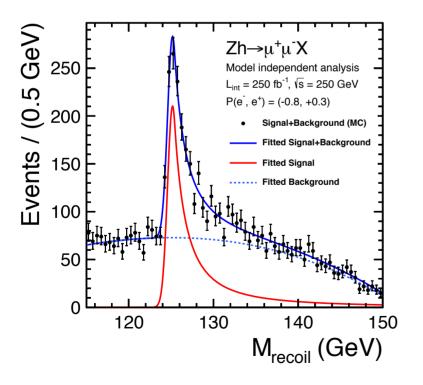
- 50 km, 2 IPs
- 90 240 GeV
- 2 x 10³⁴ cm⁻²s⁻¹ / IP
- bunch spacing: few µs
- power? ~400-500 MW ?

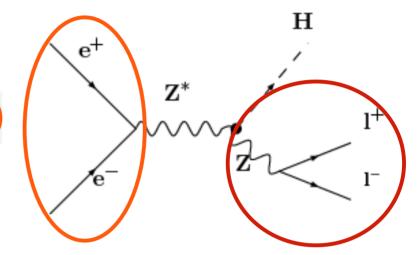
FCC-ee (CERN)

- 80-100 km, 4 IPs
- 90 350 GeV
- $28 2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} / \text{IP}$
- bunch spacing: 10 ns 10 μs
- power aim: 300 MW

no trains: continuous operation

- => good for physics: low per-bunch luminosity, no beamstrahlung
- ⇒ bad for detectors: no power pulsing possible, need cooling! => low-mass cooling systems


Detector "R&C": Requirements and Challenges

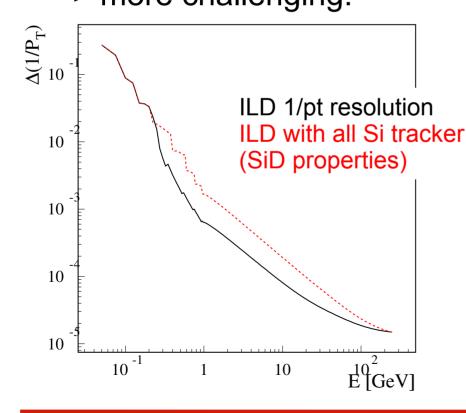

- The key: the total ZH cross section
- Indirect search for new physics: Higgs branching ratios
- Establishing the mexican hat: the Higgs self-coupling
- Identifying Higgs partners: Higgsinos

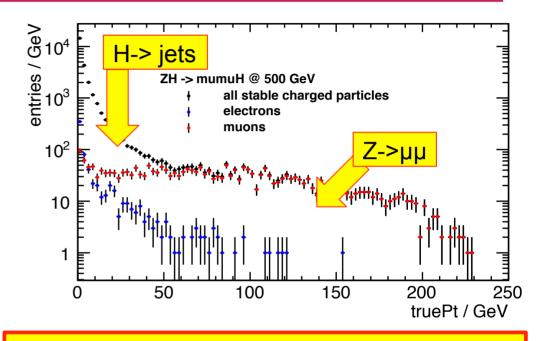
The model-independent measurement of σ_{ZH}

How? → recoil method:

$$M_H^2 = M_{recoil}^2 = s + M_Z^2 - 2E_Z\sqrt{s}$$

initial state:


known event-by-event apart from

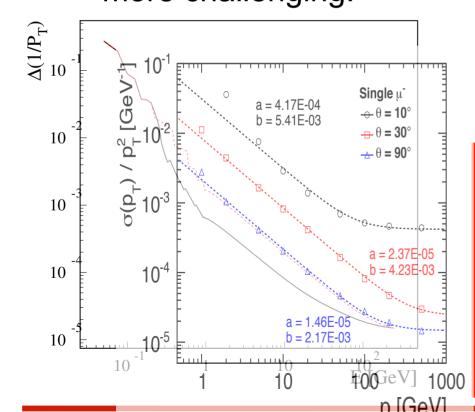

- beam energy spread of accelerator
- beam strahlung
- ISR
- ⇒ shape of peak is detector resolution folded with beam energy spectrum!
- ⇒ nuissance parameter...

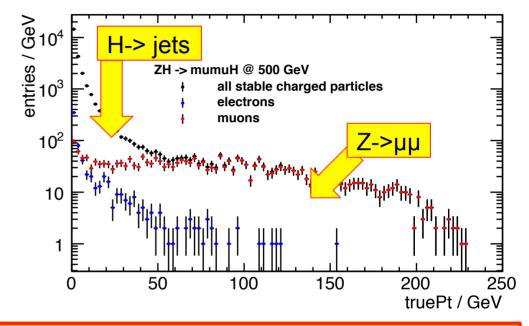
Higgs Recoil: Momentum resolution

 \sqrt{s} = 250 GeV: Z ~ at rest, p_µ≈ 45 GeV

higher √s : Z boosted => wide momentum range => more challenging!

Gaseous tracker has less material => less multiple scattering


Challenges (not in simulation so far):


- alignment
- field distortions in TPC
- stability of momentum scale: required to same level as resolution!

Higgs Recoil: Momentum resolution

 \sqrt{s} = 250 GeV: Z ~ at rest, p_{μ} ≈ 45 GeV

higher √s : Z boosted => wide momentum range => more challenging!

Gaseous tracker has less material => less multiple scattering

Challenges (not in simulation so far):

- alignment
- field distortions in TPC
- stability of momentum scale: required to same level as resolution!

Higgs recoil: Systematic Effects

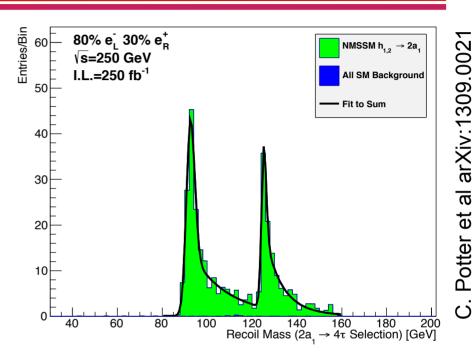
luminosity: based on low-angle Bhabha's - current status ~2.6 10⁻³, limited by [JINST 8 (2013) P08012]

- theory (NLO EW ee->4e) ~2 10⁻³
- energy scale calibration/stability of LumiCal ~1 10-3 (if scale known to 2 10-3)

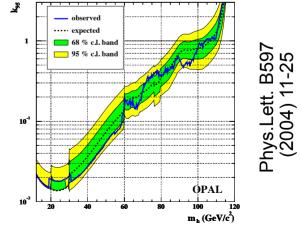
beam polarisation:

- polarimeter detectors reach 2.5 10⁻³ or better [JINST 10 (2015) 05, P05014, arXiv:1509.03178]
- long-term scale calibration to collision data, eg WW angular spectra ~ 1 10⁻³, probably limited by knowledge of collision parameters [JINST 9 (2014) P07003]

shape of peak:

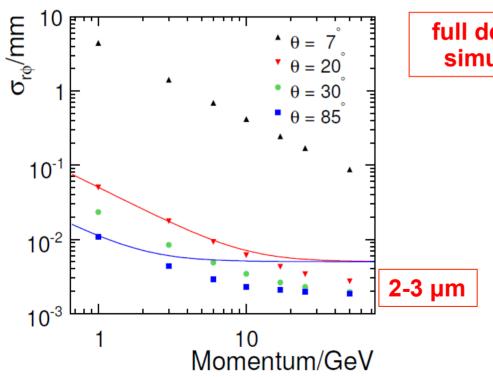

- beam energy spread, beamstrahlung, ISR: calibrate against Z recoil from ZZ -> μμΧ
- knowledge of momentum resolution: calibrate against Z lineshape from ZZ -> μμΧ
- ⇒ limited by ZZ statistics to ~ same order as ZH statistical uncertainty

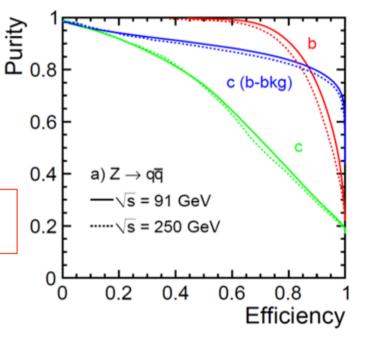
If no polarisation, no beamstrahlung (eg circular collider): detector challenges:


- energy scale of LumiCal
- modeling of momentum resolution

Do the same trick to search for m_h < 125 GeV

- Z boosted even at $\sqrt{s} = 250 \text{ GeV}$
- small coupling to Z: tiny signals
- => momentum resolution even more crucial!


- high interest from theorists / modelbuilders
- currently no detailed ILC simulation study to show accessible range in coupling to Z


Higgs branching ratios – the usual (ILC) picture

high performance flavour tag

- secondary / tertiary vertex finding
- needs impact parameter resolution

full detector simulation

"classic" difference between ILD & SiD: choice of time vs point resolution

LHC and ILC Vertex detectors

	LHC	ILC	Comment
Radiation Level	>10 ¹⁶ NEQ (neutron equivalent)/cm ² (3ab ⁻¹)	10 ¹⁰ NEQ/cm ² /yr	~O(10⁵) difference FPCCD not a solution at LHC
Readout speed requirement (time structure of beam)	40MHz	5Hz (ILD FPCCD) 100kHz (ILD CMOS) 3MHz (SiD)	FPCCD not a solution at LHC
Hit density	2.4hits/cm²/bunch (r=8cm) 12.5ns	~6hits/cm²/bunch (r=1.6cm) 300ns	Factor of ~3 difference for a given pixel size

Key questions for ILC VTX:

- do we need single BX readout / time stamping?
 - SiD: always assumed this will be possible
 - ILD TDR: conservative => 10-100μs, studying impact of pair background on charm-tagging => educated choice of time vs point resolution
- ultra-low mass: aim for 0.15% of a rad. length per double layer

Higgs branching ratios: a closer look

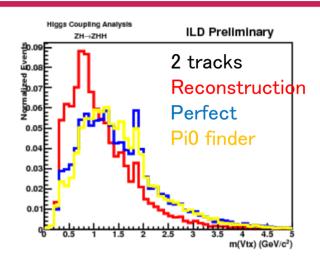
BR(H->bb):

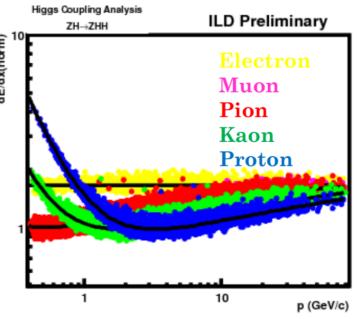
potentially systematically limited for full ILC data set

- b-tagging efficiency?
- b fragmentation function?
- b-jet energy resolution/ scale?
- neutral hadron fraction?

BR (H->cc / gg / тт):

statistically limited even for full ILC data set


- high performance flavour tag / τ reconstruction
- currently:
 - rely mainly on secondary / tertiary vertex finding
 - impact parameter resolution

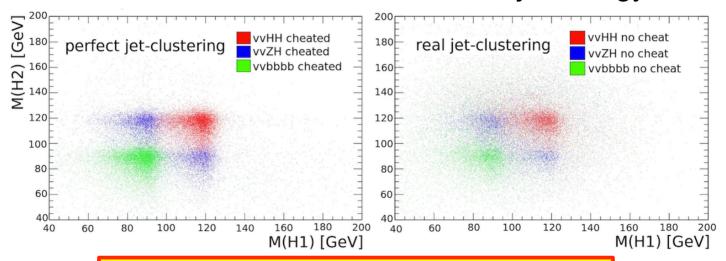

Are there other detector performance aspects which we do not yet consider or cover with the usual benchmarks?

Flavour Tag – can be augmented by

- lepton ID in jets: tag semi-leptonic decays
 high granular calorimeter & dE/dx
- vertex mass: re-attach π⁰ -> γγ ?
 (even better: improve π⁰ by kinematic fit)
- particle identification:
 - improved impact parameter resolution with correct mass hypothesis
 - c -> s: which is π , which is K?
 - identify exclusive decay chains
 - and remember systematic uncertainties: verify / re-measure b/c-fragmentation, b/c charged multiplicity, ...

What is the actual dE/dx resolution of the ILD TPC?
What could be done with all-silicon?

Higgs Self-Coupling: The Challenge

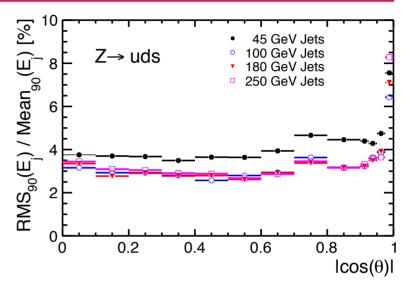

 very low cross section ~0.2 – 0.3 fb @ 500 GeV (depending on polarisation)

many channels, largest BR:

- Zbbbb (36%): 4-6 jets
- ZbbWW* (12%): 6-8 jets

experimental handles:

- flavour tag, lepton ID (s.a.)
- kinematic information
 jet energy resolution

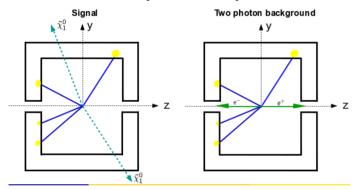


Excellent particle flow calorimetry: jet energy resolution in multi-jet final states limited by jet clustering

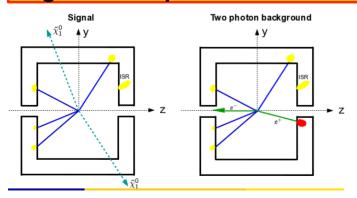
Jet Energy Resolution

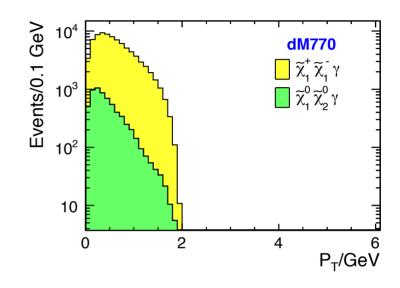
Definition (eg in TDR):

- ee->uu/dd/ss at fixed energy
- no ISR => $E_{iet} = E_{vis} / 2$
- $rms_{90} < \sigma$
- isolates detector performance but beware: not always close to physics
- PID: m_p (1 GeV) $/E_{jet}$ (50 GeV) = 2% compare to ~3% resolution!
- combined with flavour-tag: keep decay chains in same yet, incl. vertex-attached π^0
- neutral hadron fraction:
 - significant impact on JER
 - need to measure at ILC


particle	Pythia	OPAL	LEP data
	tune	tune	
р	1.2190	0.9110	0.9750 ± 0.0870
n	1.1661	0.8664	
K _S ⁰	1.1168	1.0150	1.0040 ± 0.0150
K_L^{o}	1.1057	1.0164	

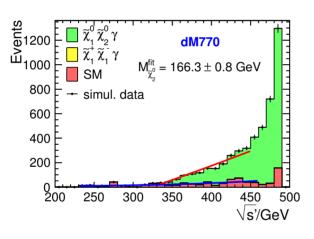
The key: measure rate of K⁰s

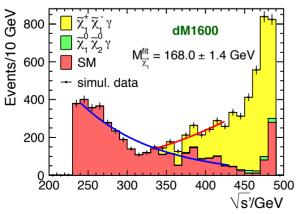

- ct = 2.7 cm
- eg 5 GeV K⁰_S flies ~30 cm
- => "V0" signature in TPC

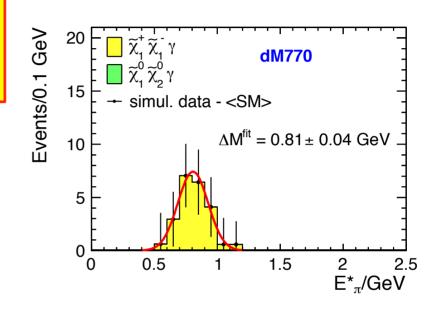

Higgsinos - the Challenge

- very few, soft visible particles
- in addition: tough background from two-photon processes

tag with ISR photon in detector

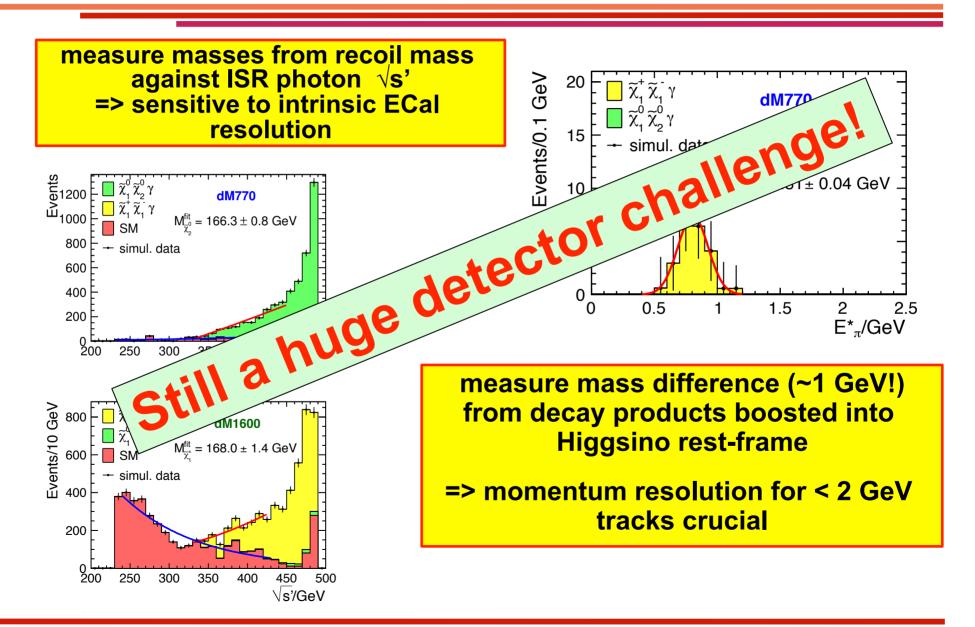



required to identify Higgsinos:


- semi-leptonic chargino pairs=> lepton ID for p<2 GeV
- exclusive decays: PID
- lifetime: high efficiency for vertex pattern recognition, also at low momenta!

Higgsinos – the Analysis

measure masses from recoil mass against ISR photon √s' => sensitive to intrinsic ECal resolution



measure mass difference (~1 GeV!) from decay products boosted into Higgsino rest-frame

=> momentum resolution for < 2 GeV tracks crucial

Higgsinos – the Analysis

Conclusions

Summary

- A complete picture of the Higgs sector requires unique information from e⁺e⁻ colliders (complementary to hadron colliders, model-independent)
- Higgs physics relies on all classic detector performance aspects: JER, flavour tag, momentum res., hermeticity
 - crucial: low mass, low power, high granularity detectors
 - need to consider machine properties => significant differences between ILC/CLIC and circular colliders?
- underestimated / not sufficiently studied so far:
 - particle ID: impact on flavour tag, JER
 - helper measurements: eg neutral hadron fraction => K⁰_S
 - reconstruction and ID of low momentum particles (< 2 GeV)
 - alignment / calibration / stability

Summary – ILC Detectors

Status

- well understood detector concepts, incl. integration, mechanics etc at adequate level for phase of project
- 1st order detector performance in many aspects demonstrated in testbeam, some technical/engineering challenges remain => ready to get serious!
- 2nd order performance: more detail, redundancy, control of systematics: might make the difference!

Wish list & challenges

- single bunch crossing read-out / time stamping for vertex detector

 while maintaining point resolution!
- alignment, stability; ILD: TPC distortions
- fully demonstrate power-pulsing: 5 Hz 10 Hz continuous
- particle ID, low momentum particles

Thank You

.... for listening

And thanks to all people from whom I stole material while preparing this talk:

- Ties Behnke
- Mikael Berggren
- Klaus Desch
- Masakazu Kurata
- Hale Sert
- Junping Tian

.... and of course SiD & ILD, ILC TDR VOL 4, CLIC CDR, CepC pre-CDR, FCC-ee webpage.....